Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques.
نویسندگان
چکیده
In this study, we evaluate the performance of a flow-based surface evolution fiber tracking algorithm by means of a physical anisotropic diffusion phantom with known connectivity. We introduce a novel speed function for surface evolution that is derived from either diffusion tensor (DT) data, high angular resolution diffusion (HARD) data, or a combined DT-HARD hybrid approach. We use the model-free q-ball imaging (QBI) approach for HARD reconstruction. The anisotropic diffusion phantom allows us to compare and evaluate the performance of different fiber tracking approaches in the presence of real imaging artifacts, noise, and subvoxel partial volume averaging of fiber directions. The surface evolution approach, using the full diffusion tensor as opposed to the principal diffusion direction (PDD) only, is compared to PDD-based line propagation fiber tracking. Additionally, DT reconstruction is compared to HARD reconstruction for fiber tracking, both using surface evolution. We show the potential for surface evolution using the full diffusion tensor to map connections in regions of subvoxel partial volume averaging of fiber directions, which can be difficult to map with PDD-based methods. We then show that the fiber tracking results can be improved by using high angular resolution reconstruction of the diffusion orientation distribution function in cases where the diffusion tensor model fits the data poorly.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملA Connectome-Based Comparison of Diffusion MRI Schemes
Diffusion MRI has evolved towards an important clinical diagnostic and research tool. Though clinical routine is using mainly diffusion weighted and tensor imaging approaches, Q-ball imaging and diffusion spectrum imaging techniques have become more widely available. They are frequently used in research-oriented investigations in particular those aiming at measuring brain network connectivity. ...
متن کاملPDFlib PLOP: PDF Linearization, Optimization, Protection
This chapter reviews multiple-fiber reconstruction algorithms for diffusion magnetic resonance imaging (MRI) and provides some initial comparative results for two such algorithms, q-ball imaging and PASMRI, on data from a typical clinical diffusion MRI acquisition. The chapter highlights the problems with standard approaches, such as diffusion-tensor MRI, to motivate a recent set of alternative...
متن کاملComparison of three tracking methods of white matter fiber bindles based on diffusion MRI
Diffusion MRI is based on the measurement of Brownian motion of water molecules. It is possible to use this diffusion property as a probe to study the structure of spatial order in living brain tissues noninvasively. This paper put forward with a unified tracking algorithm based on diffusion tensor imaging, diffusion spectrum imaging and Q-Ball imaging. By applying the three methods to the same...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2005